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The spectral collocation method is used to determine the stability of parametrically
excited systems and compared with the traditional transition matrix approach. Results
from a series of test problems demonstrate that spectral collocation converges rapidly. In
addition, the spectral collocation method preserves the sparsity of the underlying system
matrices, a property not shared by the transition matrix approach. As a result, spectral
collocation can be used for very large systems and can utilize sparse eigensolvers to reduce
computational memory and time. For the large-scale system studied (up to 40 degrees of
freedom), the spectral collocation method was on average an order of magnitude faster
than the transition matrix approach using Matlab. This computational advantage is
implementation specific; in a C implementation of the algorithm, the transition matrix
method is faster than the spectral collocation. Overall, the method proves to be simple,
efficient, reliable, and generally competitive with the transition matrix method.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

This paper evaluates a new numerical algorithm for determining the stability of
parametrically excited systems, i.e., systems of homogeneous ordinary differential
equations with periodic coefficients. These mathematical models have been used to
describe numerous mechanical systems including reciprocating machinery [1], belt drives
and moving bands [2–6], asymmetric circular saws [7], and disk drives [8, 9]. The design of
these devices depends in part on their dynamic stability and, to that end, efficient
algorithms for determining stability are helpful.

Numerous algorithms are available for evaluating the stability of parametrically excited
systems. Analytic procedures including perturbation and Lyapunov methods can be
employed if the system under evaluation has either a small perturbation parameter or a
known Lyapunov function [10]. When applicable, analytic methods can be efficient and
insightful. However, the class of applicable systems is limited, and the methods are
normally only applicable to systems with relatively low degrees of freedom due, in part, to
algebraic complexity. Wu et al. [11] present a modified perturbation algorithm for large-
scale systems, but their principle example of a large-scale system possesses only 11 degrees
of freedom.

The most important and widely used numerical method for determining the stability of
parametrically excited systems involves calculating the eigenvalues of the transition matrix
[10]. Although robust, the transition matrix approach is computationally expensive. For
an m degree of freedom, second order system, computation of the transition matrix
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requires O(m3) operations: integration of 2m initial conditions with evaluation of the
system derivatives requiring O(m2) numerical operations at each time step, assuming that
the leading order matrices have been previously inverted or decomposed. Previous
researchers have proposed alternative integration procedures in order to reduce the
computational expense of computing the transition matrix [12, 13]. However, subsequent
to computing the transition matrix, its eigenvalues must be computed, which requires
O(m3) operations as well [14]. Hence, regardless of any efficiencies in calculating the
elements of the transition matrix, stability evaluation using the numerical transition matrix
approach requires O(m3) operations.

More important than computational expense, perhaps, is the fact that all elements of the
transition matrix must be computed and stored. This means that the transition matrix will
be full and the algorithm will have no advantages in storage or efficiency when the
underlying system is sparse [14].

This paper evaluates the use of spectral collocation to determine the stability of
parametrically excited systems. For an m-degree-of-freedom system with N collocation
points per degree of freedom, the method involves solving an mN-degree-of-freedom
quadratic eigenvalue problem. Any sparsity in the system matrices is retained by the
stability eigenvalue problem. Consequently, the method can take full advantage of sparse
computer storage and sparse eigenvalue solvers to efficiently evaluate the stability of large-
scale systems. Although this new analysis procedure uses well-established techniques [15],
the authors are unaware of any previous investigation.

Numerical experiments demonstrate the accuracy of the spectral collocation method on
a number of test problems. Convergence criteria are set forth that ensure the accuracy of
the Floquet eigenvalues and eliminate spurious, unstable eigenvalues. Comparisons of
computational effort prove ambiguous: in a Matlab implementation of the algorithm,
spectral collocation was roughly an order of magnitude faster than the transition matrix
method; in a C implementation, the time required for spectral collocation method was
approximately the same as with Matlab, but the transition matrix method was an order of
magnitude faster than spectral collocation. Given these conflicting results, we conclude
only that the spectral collocation method is competitive with the transition matrix
approach. The method is simple and reliable and offers an attractive alternative to other
numerical stability algorithms for parametrically excited systems.

2. STABILITY ANALYSIS

Consider the second order, m degrees of freedom, linear parametrically excited system

Mu;tt þCu;t þKuþ e PðtÞu ¼ 0; ð1Þ

where M, C, and K are constant m�m matrices, u is an m dimensional column vector, t is
time, a comma indicates differentiation, e is a constant measuring excitation magnitude,
and P is a periodic, m�m matrix of period 2p=O; i.e.,

Pðt þ 2p=OÞ ¼ PðtÞ: ð2Þ

We normalize t so that the period is 2p:

t ¼ Ot: ð3Þ

According to the Floquet theory, the 2 m fundamental solutions of equation (1) can be
written as

uðtÞ ¼ eatvðtÞ; ð4Þ
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where a is a complex constant known as a Floquet eigenvalue and vðtþ 2pÞ ¼ vðtÞ: The
solution from (4) is unique only up to changes in a of an integer multiple of i ¼

ffiffiffiffiffiffiffi
�1

p
: The

system stability is determined by a: if all Re½a	50 or if all Re½a	40 and all purely
imaginary a are semi-simple (i.e., each possesses a distinct, linearly independent
eigenvector), the system is stable; otherwise, it is unstable. Substituting equations (3)
and (4) into equation (1) gives the eigenvalue equation

O2Mðv;tt þ2av;t þa2vÞ þ OCðv;t þavÞ þ Kvþ e FðtÞv ¼ 0; ð5Þ

where Fðtþ 2pÞ ¼ FðtÞ 
 PðtÞ:
The classical method for determining the Floquet eigenvalues a of equation (1) and,

hence, system stability, is to compute the transition matrix [10]. Each column of the
transition matrix is given by numerically integrating equation (1), rewritten as a 2 m

degrees of freedom, first order system, from t=0 to 2p=O using the corresponding column
of the identity matrix as initial conditions. The eigenvalues of the transition matrix,
denoted by l; are known as Floquet multipliers, and are related to a by

l ¼ e2pa: ð6Þ

In this paper, we investigate the a using spectral collocation. The spectral collocation
method employed here utilizes the discrete Fourier transform to obtain the differentiation
matrices; a detailed derivation can be found in reference [15]. The interval 05t42p is
divided into N evenly spaced grid points,

tj ¼ 2pj=N; j ¼ 1; 2; :::; N; ð7Þ

where, for simplicity, we assume N to be even. (We could also use odd N, but would have
to use a different set of differentiation matrices D

ð1Þ
N and D

ð2Þ
N in the following; for

simplicity, we restrict ourselves to even N.) At each tj; the ith component viðtjÞ of the 2p-
periodic vector function vðtÞ is approximated by the discrete value vij : The derivatives at
each of the N grid points are given by

vi;t ðtjÞ ¼
XN

k¼1

D
ð1Þ
N

h i
jk

vik; vi;tt ðtjÞ ¼
XN

k¼1

D
ð2Þ
N

h i
jk

vik; ð8Þ

where D
ð1Þ
N and D

ð2Þ
N are the N�N differentiation matrices

D
ð1Þ
N

h i
jk
¼

0; j ¼ k;

ð�1Þj�kcot ð j � kÞh=2ð Þ=2; j=k;

(
ð9Þ

D
ð2Þ
N

h i
jk
¼

�1=6 � p2=3h2; j ¼ k;

ð�1Þj�k=2sin2 ð j � kÞh=2ð Þ=2; j=k;

(
ð10Þ

where h ¼ 2p=N: Satisfaction of equation (5) at each of N grid points yields a quadratic
eigenvalue problem with mN degrees of freedom:

a2L 2ð Þ þ aL 1ð Þ þ L 0ð Þ
� �

w ¼ 0; ð11Þ

where

L 2ð Þ ¼O2kron M; INð Þ; L 1ð Þ ¼ 2O2kron M;D
ð1Þ
N

� �
þ Okron C; INð Þ;

L 0ð Þ ¼O2kron M;D
2ð Þ

N

� �
þ Okron C;D

ð1Þ
N

� �
þ kron K; INð Þ

þ e kron F; diag d t� t1ð Þ; d t� t2ð Þ; . . . ; d t� tNð Þð Þð Þ ð12Þ
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and IN is the N�N identity matrix, kron(,) is the Kronecker tensor product, and we use
dðt� tjÞ to indicate evaluation of the appropriate component of FðtÞ at t ¼ tj:

3. CONVERGENCE

We compare convergence performance of the transition matrix and spectral collocation
methods for the damped Mathieu equation

m ¼ 1; M ¼ 1; C ¼ m; K ¼ 1; F ¼ sinðtÞ: ð13Þ

The stability properties of this system are well known [10]. We wish to determine the a to
an absolute accuracy of b > 0 so that stability requires Re½a	4b for all a:

For the transition matrix method, errors in a are determined principally by the relative
accuracy of numerical integration. Tables 1–4 list the a determined by the transition
matrix method for different integration accuracies for e¼ 0�5 Table 1, O¼ 0�5; m ¼ 0
(stable); Table 2, O¼ 1�0; m ¼ 0 (unstable); Table 3, O¼ 0�5; m¼ 0�1 (stable); Table 4,
O¼ 1�0; m¼ 0�1 (unstable). For each a; the digits thought to have converged are shadowed.
From these results, it is evident that the integration accuracy used must be approximately
an order of magnitude less than b in order to correctly predict stability. In the sequel, we
use a relative numerical integration accuracy of b=5:

For spectral collocation, better accuracy is achieved by increasing N. The results of
spectral collocation for N=4, 8, and 16 are also given in Tables 1–4. These results exhibit
two important properties found in all examples tested. First, there is one spurious,
incorrect, unstable and one spurious, incorrect, stable a in every case. (For higher
dimensional problems, we obtain one pair of spurious a for each degree of freedom.) These
spurious pairs of eigenvalues have large real parts of differing signs. The magnitudes of the
real parts increase with increasing N and do not converge. The eigensolutions
corresponding to these eigenvalues possess rapid oscillations unlike those of the other
eigensolutions. Second, apart from the pair of spurious eigenvalues, the other a converges
smoothly with increasing N, with those with smallest magnitude converging most rapidly.
The transition matrix method predicts only 2 eigenvalues, while the spectral collocation
method gives 2N eigenvalues in each case. Apart from the spurious eigenvalues, these
additional eigenvalue estimates converge to values that differ by integer multiples of i.

In order to predict stability with spectral collocation, an algorithm must be used that
filters out the spurious eigenvalues and estimates the accuracy of those that remain. The
algorithm adopted here was as follows: eigenvalues were calculated for N and for N+2
collocations points. If 2 m or more eigenvalue of the first set differed in absolute (complex)
magnitude from those of the second set by less than b; the 2 m with the smallest magnitude
were taken to have converged and used to determine stability. If there are fewer than 2 m

converged eigenvalues, but one of the converged eigenvalues satisfied Re½a	4b; the system
was deemed unstable; otherwise, the comparison was repeated using N+2 and N+4
collocation points, and so on.

Figure 1 shows the stability regions of the Mathieu equation in the O2e plane for m ¼ 0
and m¼ 0�1 created using spectral collocation. This plot was created using a contour plotting
routine which exhibits two artifacts: first, the instability regions for m ¼ 0 do not fully extend
to e ¼ 0; and second, the contours are not completely smooth. These two artifacts are
present if the plot is produced using the transition matrix algorithm. Hence, they represent
contour plotting errors rather than errors in the spectral collocation method.

In Figure 2, the number of collocation points N required for b ¼ 10�8 is superimposed
on the stability chart for m ¼ 0: Over the entire region plotted, no more than 14 collocation
points were required; for smaller e; even fewer collocation points were required.



Table 1

a obtained by transition matrix and spectral collection methods for the Mathieu equation

with e= 0�5, m= 0, O= 0�5 (stable)

Transition matrix method
Integration accuracy Re[a] Im[a]

5E�05 �0�000004285689833 � 0�035676839133928
5E�07 �0�000000048694277 � 0�035680318444710
5E�09 �0�000000000498641 � 0�035680332256699
5E�11 �0�000000000005007 � 0�035680332312127
5E�13 �0�000000000000050 � 0�035680332312350
5E�15 �0�000000000000002 � 0�035680332312349
Spectral collocation method
Number of collocation points Re[a] Im[a]

4 � 0�734394000180320 0�000000000000001
0�000000000000000 � 1�101577976626948
0�000000000000000 � 1�970731568861290
0�000000000000001 � 3�072796379912738

8 � 3�468273044996834 0�000000000000000
0�000000000000000 � 0�035843200675851
0�000000000000000 � 0�964070070604511
0�000000000000000 � 1�068949418894991
0�000000000000000 � 1�963563673513298
0�000000000000000 � 2�964299955181088
0�000000000000003 � 3�971628065420576
0�000000000000000 � 5�053618822602433

16 � 7�746128226715440 0�000000000000024
0�000000000000000 � 0�035680332312347
0�000000000000002 � 0�964319667687646

�0�000000000000001 � 1�035680332313441
0�000000000000003 � 1�964319667667444
0�000000000000001 � 2�035680335175481
0�000000000000008 � 2�964319648155042
0�000000000000006 � 3�035682900238734
0�000000000000006 � 3�964313585971642
0�000000000000007 � 4�036418049185600
0�000000000000009 � 4�964041397211546
0�000000000000012 � 5�084949863231436

�0�000000000000004 � 5�963551586883235
�0�000000000000014 � 6�964231974299665
�0�000000000000005 � 7�970960274607946
�0�000000000000019 � 9�049089358281088

Note: Digits thought to have converged are shadowed.
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Table 5 presents a comparison of the real time execution times of the transition matrix
and spectral algorithms for the undamped (m ¼ 0) Mathieu equation (13). In each case,
stability was computed over a 20� 20 grid of equally spaced points in the logðOÞ2e plane
ranging from 0�34O44 to 04e41: This is the same range shown in Figure 1. The
computations were performed on a Pentium III, 600MHz Dell computer using either
Matlab or a set of C programs. The time shown in each case is the real time required to
compute the stability of the 400 parameter sets. It is evident from these results that
computational efficiency is implementation dependent. In both implementations, spectral
collocation takes approximately the same time to execute. In C, the transition matrix



Table 2

a obtained by transition matrix and spectral collocation methods for the Mathieu equation

with e= 0�5, m= 0, O= 1 (unstable)

Integration accuracy Re[a] Im[a]
Transition matrix method
5E�05 � 0�023214883427142 0.000000000000000
5E�07 � 0�023215143682277 0�00000000000000
5E�09 � 0�023215161615550 0�00000000000000
5E�11 � 0�023215161842491 0�00000000000000
5E�13 � 0�023215161844936 0�00000000000000
5E�15 � 0�023215161844963 0�00000000000000

Spectral collocation method
Number of collocation points Re[a] Im[a]

4 � 1�737207797285618 0�000000000000000
0�000000001825943 � 0�000000000002722
0�000000000000000 � 0�979445409660376
0�000000000000001 � 2�014591179481626

8 � 3�873175061330774 0�000000000000005
� 0�023215143096603 0�000000000000000
� 0�023209892542912 � 1�000007406209806
� 0�018517246223432 � 2�004656058632418
�0�000000000000002 � 2�979344327066984

0�000000000000000 � 4�011230871269356

16 � 7�937263327298322 0�000000000000010
� 0�023215161844963 0�000000000000001
� 0�023215161844963 � 1�000000000000004
� 0�023215161844957 � 2�000000000000007
� 0�023215161844349 � 3�000000000000930
� 0�023215157485647 � 4�000000006313018
� 0�023205365440449 � 5�000013268547868
� 0�017557509618361 � 6�005336763921283
�0�000000000000021 � 6�979279677788168
�0�000000000000040 � 8�010489594341777

Note: Digits thought to have converged are shadowed.
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method is about an order of magnitude faster than spectral collocation. In Matlab, the
transition matrix method is about an order of magnitude slower than spectral collocation.
This slowness may be attributable to the speed at which external functions are called by
the numerical integrator in Matlab.

4. EXAMPLES

In this section, we summarize the results of three additional test problems.

4.1. COMBINATION RESONANCES

The two-degree-of-freedom system

M ¼
1 0

0 1

" #
; C ¼

m 0

0 m

" #
; K ¼

o2
1 0

0 o2
2

" #
; F ¼ sinðtÞ

0 1

r 0

" #
ð14Þ



Table 3

a obtained by transition matrix and spectral collocation methods for the Mathieu equation

with e= 0�5, m= 0�1, O= 0�5 (stable)

Integration accuracy Re[a] Im[a]

Transition matrix method
5E�05 �0�100007214002479 � 0�038382591871465
5E�07 �0�100000071913524 � 0�038385834463077
5E�09 �0�100000000689207 � 0�038385833180511
5E�11 �0�100000000006751 � 0�038385833042948
5E�13 �0�100000000000067 � 0�038385833041096
5E�15 �0�100000000000003 � 0�038385833041072

Spectral collocation method
Number of collocation points Re[a] Im[a]

4 � 0�640318142303661 0�000000000000000
�0�100000000000000 � 1�098631272776534
�0�100000000000000 � 1�968122770218738
�0�100000000000000 � 3�070435317613426

8 � 3�369711235034758 0�000000000000003
�0�100000000000000 � 0�038540810843795
�0�100000000000000 � 0�961387640121090
�0�100000000000000 � 1�071761906165758
�0�100000000000000 � 1�960895883350228
�0�100000000000000 � 2�961643615510970
�0�100000000000000 � 3�969022099000350
�0�100000000000000 � 5�051226508118750

16 � 7�846773657183812 �0�000000000000014
�0�100000000000000 � 0�038385833041072
�0�100000000000002 � 0�961614166958922
�0�100000000000002 � 1�038385833042177
�0�099999999999998 � 1�961614166941442
�0�100000000000002 � 2�038385835926445
�0�099999999999994 � 2�961614149998386
�0�099999999999999 � 3�038388415687972
�0�099999999999989 � 3�961608857426128
�0�099999999999996 � 4�039126250354346
�0�099999999999993 � 4�961362476564584
�0�099999999999987 � 5�087758363855455
�0�100000000000001 � 5�960883518611525
�0�100000000000005 � 6�961574930237023
�0�100000000000016 � 7�968351162942833
�0�100000000000022 � 9�046690317396536

Note: Digits thought to have converged are shadowed.
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possesses a combination resonance of the sum type at O ¼ o1 þ o2 when r ¼ 1 and of the
difference type at O ¼ o2 � o1 when r ¼ �1: Figure 3 shows the stability regions of the
sum and differences cases for o1 ¼ 1 and o2¼ 1�75 for both m ¼ 0 and 0�1. Identical results
are obtained using the transition matrix approach.

The real execution times in C and Matlab for this example with r ¼ 1 over the same
20� 20 grid used in the previous section are given in Table 5. Once again, the execution
times are approximately the same for spectral collocation in both implementations. In C,



Table 4

a obtained by transition matrix and spectral collocation methods for the Mathieu equation

with e= 0�5, m= 0�1, O= 1 (unstable)

Integration accuracy Re[a] Im[a]
Transition matrix method
5E�05 �0�027620056421262 0�000000000000000

�0�072086419315790 0�000000000000000
5E�07 �0�027919074952898 0�000000000000000

�0�072080985620024 0�000000000000000
5E�09 �0�027919042675397 0�000000000000000

�0�072080957898537 0�000000000000000
5E�11 �0�027919042307970 0�000000000000000

�0�072080957697710 0�000000000000000
5E�13 �0�027919042304099 0�000000000000000

�0�072080957695958 0�000000000000000
5E�15 �0�027919042304059 0�000000000000000

�0�072080957695944 0�000000000000000

Spectral collocation method
Number of collocation points Re[a] Im[a]

4 � 1�687924760093903 0�000000000000000
�0�050000000000000 � 0�007422287901469
�0�050000000000000 � 0�978098465685675
�0�050000000000000 � 2�013368017232088

8 � 3�823497751243955 �0�000000000000002
�0�027919062065250 0�000000000000000
�0�072080937934749 0�000000000000000
�0�027925065130059 � 1�000007443624584
�0�072074934869941 � 1�000007443624585
�0�066685311072651 � 2�004668607863050
�0�033314688927348 � 2�004668607863057
�0�049999999999999 � 2�977996308988569
�0�050000000000003 � 4�010002438373366

16 � 7�987420810380660 0�000000000000038
�0�027919042304055 0�000000000000000
�0�072080957695945 0�000000000000000
�0�027919042304057 � 1�000000000000000
�0�072080957695941 � 1�000000000000004
�0�027919042304057 � 1�999999999999999
�0�072080957695939 � 2�000000000000010
�0�027919042304755 � 3�000000000000929
�0�072080957695233 � 3�000000000000944
�0�027919047301167 � 4�000000006347660
�0�072080952698814 � 4�000000006347679
�0�072069802976370 � 5�000013323465184
�0�027930197023615 � 5�000013323465184
�0�065552809312609 � 6�005350009060750
�0�034447190687382 � 6�005350009060836
�0�050000000000020 � 6�977931218445101
�0�050000000000033 � 8�009260081167453

Note: Digits thought to have converged are shadowed.
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Figure 1. Stability regions of the Mathieu equation for m=0 and 0�1.

Figure 2. Number of collocation points required to determine the stability of the undamped Mathieu equation
to an accuracy of 10�8.

Table 5

Real execution times computing stability on a grid of 400 different parameter sets

C (s) Matlab (s)

The undamped Mathieu equation (13) with m=0 Transition matrix 1�57 597�9
Spectral collocation 5�80 10�5

Combination resonances (14) with r=1 Transition matrix 7�56 2432�43
Spectral collocation 55�29 49�35
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the transition matrix method is approximately an order of magnitude faster than spectral
collocation; in Matlab, the transition matrix method is approximately an order of
magnitude slower than spectral collocation.



Figure 3. Stability regions of the combination resonances of the (a) sum and (b) differences type for m=0 and
0�1. o1=1�0 and o2=1�75.
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4.2. A THREE-DEGREE-OF-FREEDOM EXAMPLE

Tyc et al. [16] use a three-degree-of-freedom system to describe a satellite in a circular
orbit including a nutation damper:

M ¼
1 0 0

0 1 0�01
0 0�01 0�0099

2
64

3
75; C ¼

0 c 0

�c 0 0

0 0 0

2
64

3
75;

K ¼
a 0 0

0 a w

0 w kdv

2
64

3
75; F ¼ 2e cosðtÞ

1 0 0

0 �1 0

0 0 0

2
64

3
75þ 2e sinðtÞ

0 1 0

1 0 0

0 0 0

2
64

3
75; ð15Þ



Figure 4. Stability regions of a satellite with a nutation damping in a circular orbit [16]. A mark is plotted on
each point of the grid at which the system is stable.
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where a ¼ ktðv2 þ 3=2Þ=4ð1 þ vÞ2; c ¼ ð1 � ktÞv=2ð1 þ vÞ; w ¼ 0:01v2=4ð1 þ vÞ2; kdv ¼
0:005=ð1 þ vÞ2; and e ¼ 3kt=16ð1 þ vÞ2: The stability of this system in the kt–v plane is
shown in Figure 4. For this plot, rather than trace a contour plot, we calculate stability
over a grid of points and plot a mark on each point of the grid at which the system is
stable. This chart is identical to the results given in reference [16] using both the transition
matrix and infinite eigenvalue methods.

4.3. AXIALLY MOVING STRING SUBJECT TO OSCILLATING TENSION

The spectral collocation method can be particularly advantageous for systems with large
degrees of freedom. We therefore consider the following continuous system exhibiting
parametric resonance. Consider an axially moving string subjected to a parametrically
excited relative end displacement [4, 17]. The transverse displacement of the string is
w(x, t), x is axial position, t is time, and the axial speed is v. The equation of motion is

w;tt þ2vw;tx þðv2 � 1 þ e cosðOtÞÞw;xx ¼ 0; ð16Þ
where e is the excitation magnitude and, for physical reasons, 04e51: The boundary
conditions are wð0; tÞ ¼ wð1; tÞ ¼ 0: Stability boundaries in the e2O plane have been
computed for the primary parametric instabilities and combination resonances [4]. Here
we verify these stability predictions numerically.

Two different discretization are used and compared. First, Galerkin’s method is used
with the axially moving string eigenfunctions as trial functions. Since these trial functions
are derived from the eigenvalue problem associated with the unexcited system (16), they
are efficient for analytic analysis: reference [4] deduce stability boundaries using two and
four term expansions of these trial functions. However, for the general Galerkin



Figure 5. Stability boundary of the axially moving string subject to oscillating tension. �, the unstable points
on the grid predicted by the spectral collocation; }}, stability boundaries predicted by the method of multiple
scales; - - - - - -, stability boundaries predicted by reference [4].
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procedure, the system matrices resulting from this method are full and there is no sparsity
to exploit. Second, the finite element method is used using cubic interpolation functions.
The system matrices for this discretization have a bandwidth of seven, and, hence, are
sparse.

We use Matlab to determine stability in both cases. For the finite element discretization,
we use the sparse eigenvalue solvers to expedite the solution. Figure 5 shows the stability
boundary in the O2e plane from 1�54O410 to 04e40�2; where unstable points on the
grid are marked (the opposite of Example 4�2). v=0�5. The first natural frequencies of the
unexcited system are 2�36, 4�71 and 7�07. The results show primary instabilities emanating
from O=4�71, 7�07, and 9�42, i.e., 2o1; o1 þ o2 ¼ o3; o1 þ o3; etc. A secondary low-
frequency instability is evident at O¼ 2�36: A few other, very narrow unstable regions are
also evident.

Figure 6 shows the execution time of the stability calculation using Matlab for the
parameters O¼ 4�7 and e¼ 0�1 as a function of m, the degree of freedom of the resulting
systems. For each set of data, the number of degrees of freedom used was increased until
the memory required was greater than the computer storage available. Only Matlab
results are shown since a sparse eigenvalue solver in C was unavailable. This is unfortunate
since the comparisons of computational efficiency would undoubtedly be different in C.
Using the finite element discretization, spectral collocation was on average an order of
magnitude faster than the transition matrix approach up to 40 degrees of freedom. Similar
results occur for the Galerkin discretization, although memory requirements prohibit
m>20.

Apart from rendering the stability of large systems practical, the results shown in
Figure 5 also can be used to verify low order, analytical results. Using the method of
multiple scales, the authors obtain the stability boundary of the primary instability of the



Figure 6. Execution time of the stability calculation for the parameters O¼ 4�7 and e¼ 0�1 for each m. &, the
spectral collocation with the Galerkin discretization; 4, the transition matrix with the Galerkin discretization; *,
the spectral collocation with the finite element discretization; 5, the transition matrix with the finite element
discretization.
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nth mode as

O ¼ 2np 1 � v2
� �

� e sin npvð Þ
2v

; ð17Þ

n=1, 2, 3, . . . ; for the combination of the first and second modes as

O ¼ 3p 1 � v2
� �

� 8
ffiffiffiffi
2

p
ev cos 3pv=2ð Þ
3 9v2 � 1ð Þ ; ð18Þ

for the first and third modes as

O ¼ 4p 1 � v2
� �

� 3
ffiffiffi
3

p
ev sin 2pvð Þ

4 4v2 � 1ð Þ ; ð19Þ

and for the secondary instability of the first mode as

O ¼ p 1 � v2
� �

þ e2 �G1 � G2ð Þ; ð20Þ

where

G1 ¼
�p

32v2 � Oþ o1ð Þ2þo2
1

� � �Oþ O cos 2pvð Þ þ Oþ 2o1ð Þ2p2v2 1 þ v2
� �2� �

;

G2 ¼
p3 1 � v4
� �

sin pvð Þ
8v3 � O� o1ð Þ2þo2

1

� �: ð21Þ

These boundaries are plotted in Figure 5 using the solid lines and agree well with the
numerical predictions. Also shown in Figure 5 using a dotted line are the stability
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boundaries predicted by Mockensturm et al. [4]. Because they did not examine the
combination resonance of the first and third modes, they cannot accurately predict
stability near O¼ 9�42 which is dominated by that combination resonance. In
addition, their formula for the combination resonance of the first and second modes at
O¼ 7�07 appears to be off by a factor of 2. Their prediction near O¼ 4�71 is identical to
equation (17).

5. DISCUSSION AND CONCLUSION

The spectral collocation method is used to determine the stability of parametrically
excited systems and compared to the traditional transition matrix approach. The hallmark
of spectral methods is very rapid convergence for smooth functions. This is well suited to
the parametric excitation since the periodic, fundamental solutions are smooth. Results on
a series of test problems confirm these predictions. The simplicity of the method makes it
attractive.

The spectral collocation method preserves the sparsity of the underlying system
matrices, a property not shared by the transition matrix approach. In fact, if the
eigensolver only requires vector multiplication, as some large solvers do, no additional
storage is required. As a result, spectral collocation can potentially be used for very large
systems. Unfortunately, this saving in storage does not necessarily lead to a savings in
computational effort. The computational effort appears to be implementation dependent.
Specifically, the spectral method is roughly an order of magnitude faster than the
transition matrix method in Matlab. For other implementations, we conclude only that
spectral collocation is competitive with the numerical transition matrix approach.
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